OLD MACDONALD HAD A HARMONY: AN ANIMAL-VOICED
HARMONIZER 2019

Yun Ning Hung Punahamoa Walker Lisa Anne Zahray
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology
vhung33@gatech.edu pwalkerd40@gatech.edu lzahray3@gatech.edu
ABSTRACT

We have developed a harmonizer which creates a four part Vocal
harmony of animal vocalizations based on a monophonic e
input recording. The system is broken down into four == '
parts: music parameter detection, audio transcription, har- | oacikeyand detoction
mony generation with voice leading, and audio processing o TTO \\ Ldsmﬂli
of the animal vocalization. The input audio is transcribed melody | - ol
using a state-of-the-art pitch tracking algorithm. The har- || e EEZTZ‘L’ILVH i S‘Z‘;,EE,::ZVS | Heminiggon
mony is generated using a Hidden Markov Model trained fudetomd 2:‘5’3;32;‘1;22%‘:; harmony 7
on Bach chorales. We then use a rule-based method to pe-

nalize voice leading transitions, and find the optimal path
using the Viterbi algorithm. Finally, we pitch shift animal
sounds to generate the final audio file. We analyze our sys-
tem by evaluating each subsystem.

1. INTRODUCTION

A harmonizer traditionally combines pitch-shifted audio
samples to produce a harmony with the original audio.
This paper outlines the implementation of our animal-
voiced harmonizer. It generates a four-part harmony,
voiced by animals, in response to a melody audio file.

The motivation behind this project is that while tradi-
tional harmonizers may appeal to musicians, we believe
that incorporating animal sounds will broaden the appeal
of this system to also include non-musicians. This project
does not aim to advance techniques in any one particular
area, but rather to be a novel implementation of existing
techniques and subsystems.

This paper will first outline related work, then discuss
the implementation of each subsystem, and finally provide
evaluation and discussion.

2. RELATED WORK

One of the first attempts at harmony generation in the style
of Bach chorales was a rule-based system built by Ebcioglu
in 1988 [4], which uses approximately 350 rules. Later ap-
proaches were more data-driven. For example, Allan and
Williams [1] used a Hidden Markov Model (HMM). They

© Yun Ning Hung, Punahamoa Walker, Lisa Anne Zahray.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Yun Ning Hung, Punahamoa Walker,
Lisa Anne Zahray. “Old MacDonald had a Harmony: An Animal-Voiced
Harmonizer 2019”7, 20th International Society for Music Information Re-
trieval Conference, Delft, The Netherlands, 2019.

Figure 1. The work flow of our harmonic generation sys-
tem.

used melody pitches as observations, and the intervals of
each voice relative to the melody pitch as hidden states,
with the addition of harmonic labels for chord function.
They quantized time to each beat, adding ornamentation
such as passing tones later through a second HMM. Their
system does not directly take the key of the piece into ac-
count. Liang et al. used recurrent neural networks with
long short-term memory (LSTM) [8] in their system Bach-
Bot, first transposing each piece into C major/A minor and
quantizing time to sixteenth notes. Hadjeres et al. [6] pre-
sented DeepBach, which uses a dependency network with
pseudo-Gibbs sampling to generate Bach chorales. Advan-
tages of their system include flexibility over which voice(s)
to keep fixed and which to reharmonize, and not being con-
strained to sequential generation.

For monophonic pitch tracking, autocorrelation is
the most widely used method. There are several
autocorrelation-based algorithms such as YIN [3] and
probabilistic YIN [9]. The algorithm SWIPE [2] takes a
different approach. It estimates pitch as the fundamental
frequency of the sawtooth waveform whose spectrum best
matches the spectrum of the input signal, and has high ac-
curacy on speech and musical instrument pitch tracking.
However, due to the development of deep neural networks,
state-of-the-art pitch tracking algorithms are achieved by
CREPE [7], which uses data-driven methods and operates
directly on the time-domain waveform. Since CREPE per-
forms better than other algorithms in monophonic pitch
tracking [7], we adopt the CREPE algorithm for our pitch
tracker and add some post-processing to transcribe the
melody midi file.

3. SYSTEM IMPLEMENTATION

Our system consists of four sections. First, we detect the
key and tempo of the input monophonic audio. Using this
information, the second section transcribes the audio to a
midi file. The third section uses this melody to generate
a four-part harmony midi file. The final section voices
the harmony by pitch-shifting and time-stretching animal
sounds, producing the final audio file. An overview of our
system is shown in Figure 1. Each block will now be de-
scribed in greater detail.

3.1 Music Parameter Detection

To improve the audio transcription process, key and tempo
are first extracted from the audio. The tempo of the input
is estimated using a short time Fourier transform novelty
function to determine the median inter-onset interval. For
the key detection algorithm, we compute the pitch chroma
for the input audio and use the Krumhansl templates for
selecting the key candidate.

3.2 Audio Transcription

With knowledge of the key and tempo, our system then
runs the pitch tracker CREPE [7], a deep convolutional
neural network based algorithm, to get the pitch contour
probability. For the post-processing part, our goal is to pro-
cess the pitch contour into a midi file which can be used in
the harmony generation system. The frequency contour is
converted into music notes, and we then run a median filter
to smooth out any vibrato. Finally, we quantize the pitch
contour into eighth note as the smallest unit to generate the
output midi file.

3.3 Harmony Generation

From the melody, we use a Hidden Markov Model to gen-
erate the chords, and a rule-based system for voice leading.
We use music21’s ! corpus of Bach chorales. For simplic-
ity, we ignore chorales that change time signature or key
signature throughout the piece. All chorales are transposed
into the key of C major/C minor. As in [1], we quantize
time to the beat level. Since our voice leading is separate,
we represent the data using pitch classes, rather than abso-
lute pitch. Each observation is a 24-element one-hot vector
representing the 12 pitch classes of the melody, along with
whether or not it is on a downbeat. States are all pitch
classes that exist on a beat, taking the first non-rest note
for each voice within the beat. We use two separate mod-
els for major and minor keys. We ignore pickup measures
for start probabilities, instead treating the first beat of the
first full measure as the start state. We record transition
probabilities between the 30 most-common chords. This
number was chosen as an approximate border point where
the number of instances of less-common chords became
too low to provide meaningful probabilities. We perform
additive smoothing by adding .001 to all start probabili-
ties, transition probabilities, and emission probabilities for
which the melody and chord combination is valid.

! https://web.mit.edu/music21/doc/index.html

Rule Penalty | Avg. Avg.
penalty penalty
test data | HMM
(major, (major,
minor) minor)

Parallel 2 0.061, 0.000,

fifths/octaves 0.069 0.000

Doubling third of | 1 0.096, 0.000,

major triad 0.064 0.000

Leap of tritone 1 0.014, 0.001,
0.020 0.000

Leap in alto or | 0.1 per | 0.600, 0.109,

tenor line semitone | 0.551 0.113

Doubling leading | 2 0.034, 0.000,

tone in key 0.010 0.000

Table 1. Voice leading scoring system and results. Aver-
age penalties are per transition

Voice leading has numerous rules and guidelines, some
of which have exceptions in certain contexts. Our system
has unique constraints of an unknown range for the input
soprano line and a limit on how much each animal sound
can be reasonably pitch shifted. We therefore implement a
custom rule-based system to satisfy our constraints as well
as some of the main rules of voice leading. First, we limit
the alto, tenor, and bass to a range of one octave, starting
at midi pitches 60, 53, and 46, respectively. We shift the
melody line by octaves such that the most possible notes
are contained between the pitches 67 and 78, inclusive.
We then enumerate all possible voicings for each chord,
including all potential options for doubling. These voic-
ings are used as nodes in a trellis for the Viterbi algorithm.
Each transition is scored according to the rules in Table 1.
The Viterbi algorithm is used to select the least-cost path
through the trellis, thus selecting the voice leading option
with the least penalty.

3.4 Audio Synthesis

After being provided with midi data from the harmony
generation section, the system then needs to synthesize au-
dio. The first step was to choose vocalizations of animals
which would be suitable for this application and develop
a database. We decided on 3 criteria for selecting audio
samples to minimize the amount of pitch shifting and time
stretching. The samples were selected manually according
to these criteria.

The first criterion is that the animal vocalizations need
to be a suitable length. We have found that an audio sample
with a length of around 0.7-1 seconds can be time stretched
while remaining natural-sounding within a tempo range of
70-140 beats per minute. The second criterion is that the
natural frequency of the chosen animals should be compa-
rable to their human vocal part counterpart. Finally, the
pitch of the audio sample should remain relatively con-
stant. We experimented and decided that it would be better
to pitch shift the whole audio sample by the same amount
rather divide the audio in blocks and pitch shift each block

to the correct pitch. We felt that it was less important for
the vocalizations to be perfectly in tune but rather maintain
the characteristic cadence of the each animal.

In order to pitch shift our samples, we implemented
pitch synchronous overlap and added (PSOLA) [5]. The
audio sample is resampled according to the ratio of the
desired pitch and the average pitch of the sample. This
achieves the desired pitch but will also change the length
of the sample. To achieve the desired length, the sam-
ple is divided into overlapping blocks that are twice the
length of the period and overlap by 50%. Each of these
blocks then had a periodic Hann window applied to them.
At a regular interval, blocks are either repeated or deleted.
These blocks are then resynthesized into a single dimen-
sional vector and combined with the other melodic lines.

4. EVALUATION

Due to the unique nature of this system, we evaluate the
individual parts, rather than evaluating the whole system.

4.1 Audio Transcription and Music Parameter
Detection

As we were unable to find a dataset that contains both
monophonic melody line along with its midi transcription
and tempo, we randomly downloaded 20 pieces of synthe-
sized audio and midi from Musescore forum.> We com-
pare our pitch transcription result with the ground truth
labels, achieving a note accuracy of 0.762 and an overall
accuracy of 0.853, which are calculated by using python
library: mir_eval [10]. We also used this database to eval-
uate tempo detection, manually annotating the BPM. This
provided an RMS error of 22.6 BPM. However, when we
remove the outliers present at half or double the ground
truth, our RMS error is 4.46 BPM.

4.2 Harmony Generation

Our dataset consists of 174 major Bach chorales (139 train-
ing, 35 test) and 172 minor Bach chorales (137 training, 35
test). We run our HMM on each song in the test sets, and
record two different metrics. First, we find the percentage
of correctly guessed chords. While this gives some indica-
tions about model performance, it does not provide insights
into how well transitions and chord diversity are modeled.
We additionally calculate the average posterior probabili-
ties of the ground truth states. This is the probability the
model assigns to each actual state, given the melody. States
that exist in the test data, but not our 30-state model, are as-
signed probability 0. We also provide these metrics for the
training set as a comparison. The results can be seen in
Table 2.

The evaluation metrics between test and training sets
have similar values, indicating good generalization of the
model. However, our model tends to overly favor more
common chords, resulting in less chord diversity than the
Bach chorales. The major songs show better results than

2 https://musescore.com/dashboard

Test Training| Test Training
Major | Major | Minor | Minor

Avg. poste- | 16.86% | 16.20% | 12.88% | 12.38%
rior prob. of
ground truth

states

Percentage of | 43.02% | 42.93% | 37.68% | 38.38%
correctly pre-

dicted chords

Table 2. Results of chord evaluation on 30-state HMM

the minor songs. One observation is that for minor songs,
the HMM favors certain chords in uneven proportions to
their ground truth frequency. This may be due to structural
aspects of minor chorales that are not taken into account
by the HMM. For example, minor chorales often end on a
major I chord, resulting in a high self-transition probability
for this chord of 63%. Therefore, if the model transitions to
this chord in the middle of the piece, it is unlikely to tran-
sition away from it. One potential modification to account
for this could be to use backwards, rather than forward,
transitions.

Due to our simplified approach to voice leading, which
does not aim to fully emulate Bach’s style, we evaluate suc-
cess based on the rules used in our system. Table 1 shows
the average penalty per transition for each rule, comparing
the ground truth data of the test set to the results of our al-
gorithm. Our system avoids breaking almost any rules, but
may be too strict, particularly when punishing large leaps
in the alto and tenor lines.

4.3 Audio Synthesis

Despite using animal performers rather than trained
singers, we want to make a system which is pleasing to lis-
ten to, albeit slightly ridiculous. We found that we had to
implement other restrictions to our system. We found that
using four different animals introduces too many different
timbres which is distracting from the actual music. We
use the same individual animal per vocal line for the same
reason. In addition to this, any long notes were converted
to repeated notes so that the samples were not stretched to
unnatural sounding lengths. Working within these confines
allowed us to produce fairly pleasing sounding audio.

5. CONCLUSION

Our system converts a monophonic audio recording into
a four-part chorale sung by animals. We have achieved
reasonably accurate transcription, as well as developed a
system which imitates the style of Bach’s chorales. Using
these, we have produces audio sung by different animals,
and addressed some of the unique challenges presented by
our selected performers’ vocal timbres. We believe that
we have achieved our goal of producing a harmonizer with
musical merit, as well being unusual and amusing enough
to appeal to non-musicians.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

6. REFERENCES

Moray Allan and Christopher K. I. Williams. Har-
monising chorales by probabilistic inference. Advances
in neural information processing systems, 17:25-32,
2005.

Arturo Camacho and John G Harris. A sawtooth wave-
form inspired pitch estimator for speech and music.
The Journal of the Acoustical Society of America,

124(3):1638-1652, 2008.

Alain De Cheveigné and Hideki Kawahara. Yin, a
fundamental frequency estimator for speech and mu-
sic. The Journal of the Acoustical Society of America,
111(4):1917-1930, 2002.

Kemal Ebcioglu. An expert system for harmonizing
chorales in the style of j. s. bach. Journal of Logic Pro-
gramming, 8:145-185, 1990.

M. Stella F. Charpentier. Diphone synthesis using
an overlap-add technique for speech waveforms con-
catenation. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1986.

Gaétan Hadjeres, Francois Pachet, and Frank Nielson.
Deepbach: a steerable model for bach chorales gener-
ation. In International Conference on Machine Learn-
ing, 2017.

Jong Wook Kim, Justin Salamon, Peter Li, and
Juan Pablo Bello. Crepe: A convolutional representa-
tion for pitch estimation. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 161-165. IEEE, 2018.

Feynman Liang, Mark Gotham, Matthew Johnson, and
Jami Shotton. Automatic stylistic composition of bach
chorales with deep Istm. In International Society for
Music Information Retrieval Conference, 2017.

Matthias Mauch and Simon Dixon. pyin: A fundamen-
tal frequency estimator using probabilistic threshold
distributions. In 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 659-663. IEEE, 2014.

Colin Raffel, Brian McFee, Eric J Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, Daniel PW Ellis,
and C Colin Raffel. mir_eval: A transparent implemen-
tation of common mir metrics. In In Proceedings of the
15th International Society for Music Information Re-
trieval Conference, ISMIR. Citeseer, 2014.

