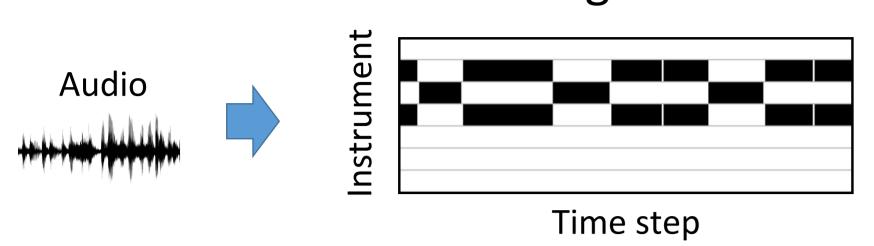
Frame-level Instrument Recognition by Timbre and Pitch

Yun-Ning Hung and Yi-Hsuan Yang (biboamy@citi.sinica.edu.tw)

Research Center for IT innovation, Academia Sinica, Taipei, Taiwan [Demo Website] https://biboamy.github.io/instrument-recognition/demo.html

Introduction

What is frame-level recognition?



- Frame-level instrument prediction is important for music transcription, music structure analysis and other retrieval problems
- Very few datasets contain instrument frame labels

Dataset	Multi instrument	Instrument Frame Labels	Pitch Frame Labels
ParisTech, UIOWA, RWC			
IRMAS, AudioSet, MagnaTagATune			
MedleyDB		✓	Part of it
Mixing Secret	✓		
MusicNet	✓	✓	✓

- Why MusicNet
 - Larger size
 - Pitch annotations

System

Conv + Barch Norm + Relu

(7x1x256)

(512x1x256)

(512x1x256)

(32x1x256)

(32x1x256)

Instrument Prediction

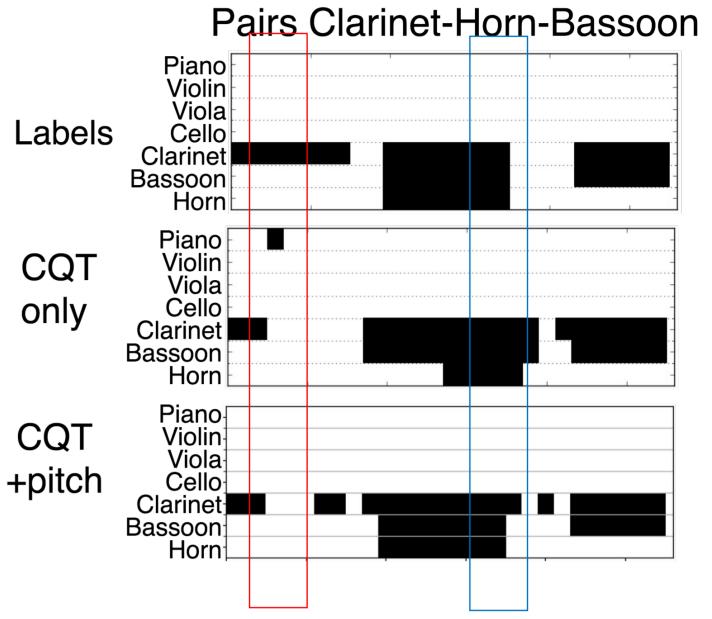
Sigmoid

Max Pool

88

- Why we need pitch annotations?
- Help catch onset/offset
- Help catch harmonic distribution
- o Instrument chromatic range

- Network structure
 - Convolutional Neural Network
 - Preserve temporal dimension
- Frame-label output



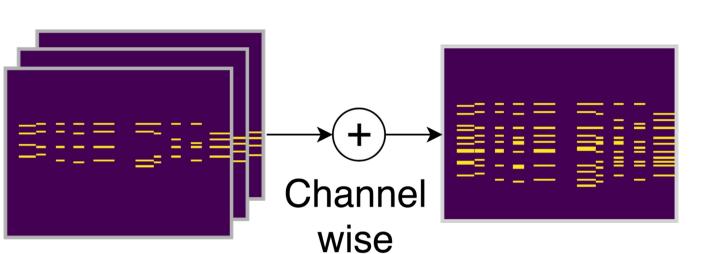
Data

MusicNet dataset [3]:

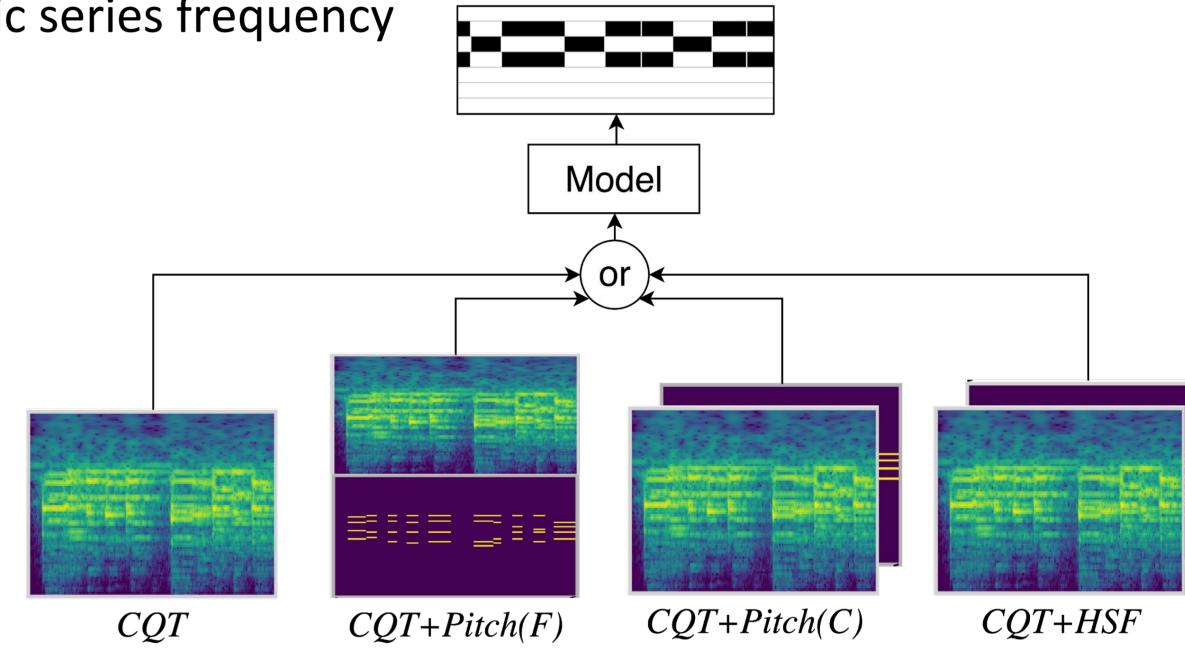
- 320 songs for training set and
 10 songs for test set
- Seven instruments included: Piano, Violin,
 Viola, Cello, Clarinet, Bassoon and Horn
- Songs are divided into 3 second clips, with 88 (Piano notes) frequency bins and 258 time steps

Input feature:

- Constant Q transform (CQT)
- Pitch: Ground truth pitch or pitch estimated by estimator [4]
- HSF: Shifting fundamental frequency upward to the harmonic series frequency

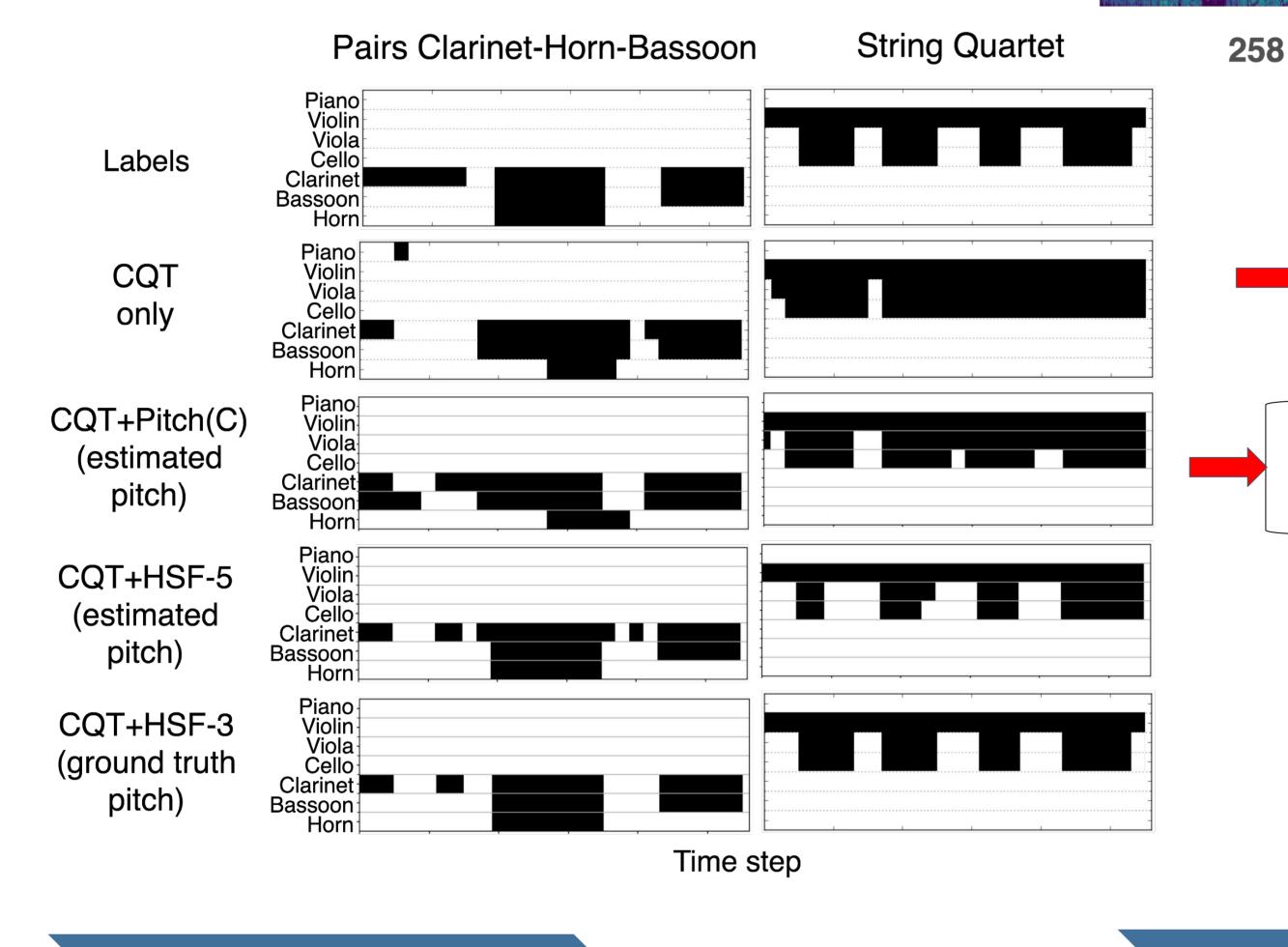


Harmonic Series Feature(HSF)



Instrument Prediction

Result



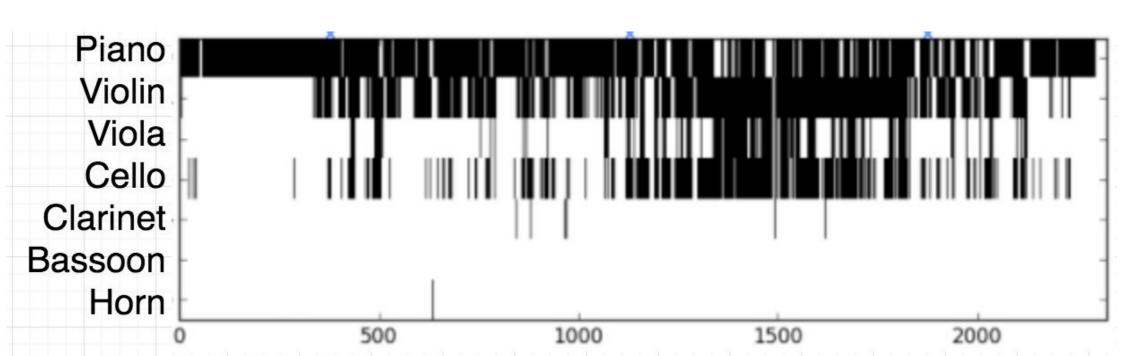
	Pitch ource	Method	Piano	Violin	Viola	Cello	Clarinet	Bassoon	Horn	Avg
n	ione	CQT only	0.982	0.956	0.830	0.933	0.894	0.822	0.789	0.887
Esti	Estimated Pitch	CQT+Pitch(C)	0.982	0.958	0.819	0.921	0.898	0.827	0.794	0.886
P		CQT+HSF	0.984	0.956	0.835	0.935	0.915	0.839	0.805	0.896
Tr	ound ruth Pitch	CQT+HSF	0.997	0.985	0.914	0.971	0.944	0.907	0.810	0.933

Adding pitch information can achieve higher
 F1-score than without pitch

- Adding HSF can
 achieve higher F1-score
 than just adding pitch
- We can reach 93% F1-score as the uper bound of adding pitch

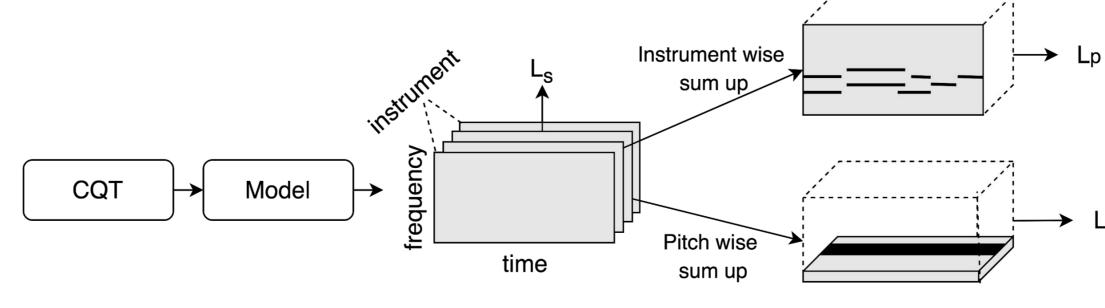
Improvement

- Instrument catagories: We will include MedleyDB & Mixing Secret in the future to cover more instrument and genre
- Temporal modeling: Include RNN to our network structure



Adele-Make you feel my love

Future Work



- Pitch and timbre joint learning
- Audio transcription
- Piano-rolls generation
- Pitch and timbre disentanglement
- Pitch and timbre representation learning
- Domain adaptation

Reference

[1] Liu et al. "Event localization in music auto-tagging." *ACMMM 2016*.

[2] Chou et al. "Learning to Recognize Transient Sound Events using Attentional Supervision." *IJCAI*. 2018.
[3]

https://homes.cs.washington.edu/~thickstn/musicnet.httmlhttmlhttmlhttmlhttmlhttmlhttmlhttmlhttps://homes.cs.washington.edu/~thickstn/musicnet.https://homes.cs.washington.edu/~thickstn/musicnet.https://homes.cs.washington.edu/~thickstn/musicnet.https://homes.cs.washington.edu/~thickstn/musicnet.https://homes.cs.washington.edu/~thickstn/musicnet.https://homes.cs.washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/~thickstn/washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.cs.washington.edu/">https://homes.c

[4] Thickstun et al. Invariances and Data Augmentation for Supervised Music Transcription. ICASSP, 2018.