Multitask Learning For Frame-Level Instrument Recognition

${ }^{1}$ Yun-Ning Hung, ${ }^{2}$ Yi-An Chen and ${ }^{1}$ Yi-Hsuan Yang
${ }^{1}$ Research Center for IT innovation, Academia Sinica, Taipei, Taiwan
${ }^{2}$ KKBOX Inc., Taiwan
[Project Website] https://biboamy.github.io/streaming-demo/main_site/

Introduction

Frame-level instrument recognition

- Predict the instrument labels in each time frame
- Pitch can help frame-level instrument recognition [3]

Why multitask learning?

- By sharing representations between different tasks, we can enable our model to generalize better on our original task
- Has been used successfully across many applications, such as computer vision,

(a) Pianoroll
(b) Instrument roll

(c) Pitch roll

Multi-pitch streaming

- Predict the instrument that plays each individual note event (multi-pitch streaming)
- Piano roll: representation for multi-pitch streaming NLP and speech recognition, but not so much on music

Data

Problem

- No big dataset with instrument and pitch labels

Musescore dataset:

- Collect more than 344,166 pieces of song from Musescore forum
- Paired mp3 and MIDI files
- Include variety of genre and 128 instruments
- Synthesized music (from variety of synthesizers)
- We process the MIDi files to pianoroll, multi-pitch labels and instrument frame labels

Dataset	Pitch labels	Instrument Labels	Real or Synth	Genre	Numbers of songs
MedleyDB	Δ (partially)	\checkmark	Real	Variety	122
MusicNet	\checkmark	\checkmark	Real	Classic	330
Bach10	\checkmark	\checkmark	Real	Classic	10
Mixing Secret		\checkmark	Real	Variety	258
Musescore (in this paper)	\checkmark	\checkmark	Synth	Variety	344,166

Limitation:

- No singing voice
- Not realistic music

CQT

- Unet as the main model structure
- The encoder and decoder are composed of four residual blocks. Each residual block has three convolution/up-convolution, two batchNorm and two leakyReLU layers.
- Binary Cross Entropy between ground truth and predicted value
- Doing three tasks at the same time:
o Piano roll prediction
o Multi-pitch estimation
o Instrument activity detection

Instrument activity detection

Result

Method	Instrument	Pitch	Pianoroll
$L_{\text {roll }}$ only (ablated)	-	-	0.623
L_{i} only (ablated)	0.896	-	-
L_{p} only (ablated)	-	0.799	-
all (proposed)	0.947	0.803	0.647

Method	Training Set	Piano	Guitar	Violin	Cello	Flute	Avg
$[1]$	YouTube-8M	0.766	0.780	0.787	0.755	0.708	0.759
$[2]$	Training split of 'MedleyDB+Mixing Secrets'	0.733	0.783	0.857	0.860	0.851	$\mathbf{0 . 8 1 7}$
$[3]$	MuseScore training subset	0.690	0.660	0.697	0.774	0.860	0.736
Ours	MuseScore training subset	0.718	0.819	0.682	0.812	0.961	$\mathbf{0 . 7 9 8}$

- Multitask learning is better than single task learning method
- Different methods but same testing set in [2]
- Testing set includes multi-instrument and singing voice
- F1-score of each instrument
- Compares favorably with [2]

Future Work

- Using different synthesizers to augment our data
- Include singing voice into our model
- Increase instrument categories
- Music style transfer: change the latent vector Z in a meaningful way so that the output score can be modified too

Reference

