Multitask Learning For Frame-Level Instrument Recognition

¹ Yun-Ning Hung, ² Yi-An Chen and ¹ Yi-Hsuan Yang

¹Research Center for IT innovation, Academia Sinica, Taipei, Taiwan ² KKBOX Inc., Taiwan

Numbers of

songs

122

330

10

258

344,166

Introduction

(a) Pianoroll (b) Instrument roll (c) Pitch roll

Frame-level instrument recognition

- Predict the instrument labels in each time frame
- Pitch can help frame-level instrument recognition [3]

Why multitask learning?

- By sharing representations between different tasks, we can enable our model to generalize better on our original task
- Has been used successfully across many applications, such as computer vision, NLP and speech recognition, but not so much on music

Multi-pitch streaming

Instrument

Labels

Pitch labels

△ (partially)

- Predict the instrument that plays each individual note event (multi-pitch streaming)
- Piano roll: representation for multi-pitch streaming

Real or Synth

Real

Real

Real

Real

Synth

Genre

Variety

Classic

Classic

Variety

Variety

Data

Problem

- No big dataset with instrument and pitch labels Musescore dataset:
- Collect more than 344,166 pieces of song from Musescore forum
- Paired mp3 and MIDI files
- Include variety of genre and 128 instruments
- Synthesized music (from variety of synthesizers)
- We process the MIDi files to pianoroll, multi-pitch labels and instrument frame labels

Limitation:

- No singing voice
- Not realistic music

Dataset

MedleyDB

MusicNet

Bach10

Mixing Secret

Musescore (in

this paper)

System

Method

[1]

[2]

[3]

Ours

- Unet as the main model structure
- The encoder and decoder are composed of four residual blocks. Each residual block has three convolution/up-convolution, two batchNorm and two leakyReLU layers.
- Binary Cross Entropy between ground truth and predicted value

Violin

0.787

0.857

0.697

0.682

- Doing three tasks at the same time:
 - o Piano roll prediction

Piano

0.766

0.733

0.690

0.718

- o Multi-pitch estimation
- o Instrument activity detection

Guitar

0.780

0.783

0.660

0.819

Result

Method	Instrument	Pitch	Pianoroll
L_{roll} only (ablated)		<u> </u>	0.623
L_i only (ablated)	0.896	-	-
L_p only (ablated)	<u></u>	0.799	-
all (proposed)	0.947	0.803	0.647

, , ,			
L_i only (ablated)	0.896	-	-
L_p only (ablated)		0.799	
all (proposed)	0.947	0.803	0.647

- Multitask learning is better than single task learning method
- Different methods but same testing set in [2]
- Testing set includes multi-instrument and singing voice
- F1-score of each instrument
- Compares favorably with [2]

80 Melody Note 50 30 20 10 Bass Time

Training Set

'MedleyDB+Mixing Secrets'

MuseScore training subset

MuseScore training subset

YouTube-8M

Training split of

Music Transcription					
In this page, we p	provide some samples to demonstrate our reasonable Multitask learning for frame-level	music transcription result proposed by this pape el instrument recognition			
	Original Song	Transcription result			
Sample 1:	▶ 0:00 / 2:15 • • • • • • • • • • • • • • • • • • •	▶ 0:00 / 2:10 ● • • • •			
Sample 2:	▶ 0:00 / 1:16 • • • • • • • • • • • • • • • • • • •	▶ 0:00 / 1:14 • • • • • • • • • • • • • • • • • • •			
Sample 3:	▶ 0:00 / 2:05 ● ● ● ●	▶ 0:00 / 2:00 →			
Sample 4:	▶ 0:00 / 0:59 ◄)	▶ 0:00 / 0:56 ● ◄ ●			

Cello

0.755

0.860

0.774

0.812

Flute

0.708

0.851

0.860

0.961

Avg

0.759

0.817

0.736

0.798

Multi-pitch streaming overview!!

Future Work

- Using different synthesizers to augment our data
- Include singing voice into our model
- Increase instrument categories
- Music style transfer: change the latent vector Z in a meaningful way so that the output score can be modified too

Reference

[1] Jen-Yu Liu, Yi-Hsuan Yang, and Shyh-Kang Jeng, "Weakly-supervised visual instrument-playing action detection in videos," IEEE Trans. Multimedia, in press.

[2] Siddharth Gururani, Cameron Summers, and Alexander Lerch, "Instrument activity detection in polyphonic music using deep neural networks," in Proc. ISMIR, 2018.

[3] Yun-Ning Hung and Yi-Hsuan Yang, "Frame-level instrument recognition by timbre and pitch," in Proc. ISMIR ,2018, pp. 135–142.